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Received 20 May 1997

Abstract. The equivalence principle is treated on a mathematically rigorous base on sufficiently
general subsets of a differentiable manifold. This is carried out using the basis of derivations
of tensor algebra over that manifold. Necessary and/or sufficient conditions of existence,
uniqueness, and holonomicity of those bases, in which the components of the derivations of the
tensor algebra over the manifold vanish on these subsets, are studied. The linear connections
are considered in this context. It is shown that the equivalence principle is identically valid at
any point, and along any path, in every gravitational theory based on linear connections. On
higher-dimensional submanifolds it may be valid only in certain exceptional cases.

1. Introduction

In connection with the equivalence principle [1, ch 16], as well as from purely mathematical
reasons [2–5], an important problem is the existence of local (holonomic or anholonomic
[2]) coordinates (bases) in which the components of a linear connection [3] vanish on some
subset, usually a submanifold, of a differentiable manifold [3]. This problem has been
solved for torsion free, i.e. symmetric, linear connections [3, 4] in the cases at a point
[2–5], along a smooth path without self-intersections [2, 5], and in a neighbourhood [2, 5].
These results were generalized in our previous works [6–9] for arbitrary derivations of the
tensor algebra, with or without torsion, over a given differentiable manifold [3] and, in
particular, for arbitrary linear connections. General results of this kind can be found in
[10], where a criteria is presented for the existence of the above-mentioned special bases
(coordinates) on submanifolds of a space with a symmetric affine connection.

This work is a revised version of [11] and a continuation of [7, 9]. It generalizes
the results from [7, 9, 10] and deals with the problems of existence, uniqueness, and
holonomicity of special bases (frames) in which the components of a derivation of the
tensor algebra over a differentiable manifold vanish on some of its subsets of a sufficiently
general type (sections 3 and 4). If such frames exist, they are callednormal. In particular,
the considered derivation may be a linear connection (section 5). In this context we
make conclusions concerning the general validity and the mathematical formulation of the
equivalence principle in a class of gravitational theories (section 6).
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2. Mathematical preliminaries

Below we reproduce for further reference purposes, as well as for the exact statement of the
above problems, a few simple facts about derivations of tensor algebras that can be found
in [7, 9] or derived from those in [3].

Let D be a derivation of the tensor algebra over a manifoldM [12, 3]. By [3,
proposition 3.3 of ch I] there exist a unique vector fieldX and a unique tensor fieldS
of type (1, 1) such thatD = LX + S. HereLX is the Lie derivative alongX [12, 3] andS
is considered as a derivation of the tensor algebra overM [3].

If S maps from the set ofC1 vector fields into the tensor fields of type (1,1) and
S : X 7→ SX, then the equationDS

X = LX + SX defines a derivation of the tensor algebra
over M for any C1 vector fieldX [3]. Such a derivation will be called anS-derivation
alongX and denoted for brevity simply byDX. An S-derivation is a mapD such that
D : X 7→ DX, whereDX is anS-derivation alongX.

Let {Ei, i = 1, . . . , n := dim(M)} be a (coordinate or not [2, 4]) local basis (frame)
of vector fields in the tangent bundle toM. It is holonomic (anholonomic) if the vectors
E1, . . . , En commute (do not commute) [2, 4]. Using the explicit action ofLX andSX on
tensor fields [3] one can easily deduce the explicit form of the local components ofDXT

for anyC1 tensor fieldT . In particular, thecomponents(WX)
i
j of DX are defined by

DX(Ej ) = (WX)
i
jEi. (2.1)

Here and below all Latin indices, perhaps with some super- or subscripts, run from 1
to n := dim(M) and the usual summation rule on indices repeated on different levels is
assumed. It is easily seen that(WX)

i
j := (SX)ij −Ej(Xi)+CikjXk whereX(f ) denotes the

action ofX = XkEk on theC1 scalar functionf , asX(f ) := XkEk(f ), and theCikj define
the commutators of the basic vector fields by [Ej ,Ek] = CijkEi .

The change{Ei} 7→ {E′m := AimEi}, A := [Aim] being a nondegenerate matrix
function, implies the transformation of(WX)

i
j into (see (2.1))(W ′X)

m
l = (A−1)mi A

j

l

(WX)
i
j + (A−1)mi X(A

i
l ). Introducing the matricesWX := [(WX)

i
j ] and W ′X := [(W ′X)

m
l ]

and puttingX(A) := XkEk(A) = [XkEk(Aim)], we obtain

W ′X = A−1{WXA+X(A)}. (2.2)

If ∇ is a linear connection with local components0ijk (see, e.g. [12, 3, 4]), then
∇X(Ej ) = (0ijkXk)Ei [3]. Hence, we see from (2.1) thatDX is a covariant differentiation
alongX iff

(WX)
i
j = 0ijkXk (2.3)

for some functions0ijk.
Let D be anS-derivation andX andY be vector fields. Thetorsion operatorT D of D

is defined as

T D(X, Y ) := DXY −DYX − [X, Y ]. (2.4)

The S-derivationD is torsion freeif T D = 0 (cf [3]).
For a linear connection∇, due to (2.3), we have(T ∇(X, Y ))i = T iklX

kY l where
T ikl := −(0ikl − 0ilk)− Cikl are the components of the torsion tensor of∇ [3].

Further we investigate the problem of the existence of bases{E′i} in whichW ′X = 0 for
an S-derivationD along any or a fixed vector fieldX. These bases (frames), if any, are
callednormal. Hence, due to (2.2), we have to solve the equationWX(A)+X(A) = 0 with
respect toA under conditions that will be presented below.
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3. Derivations along every vector fields

This section is devoted to the existence and some properties of special bases (frames){E′i},
defined in a neighbourhood of a subsetU of the manifoldM, in which the components of
an S-derivationDX along anevery vector fieldX vanish onU . These bases (frames), if
any, are callednormal in U .

The derivationD is calledlinear on the setU ⊆ M if (cf (2.3)) in some (and hence in
any) basis{Ei} is fulfilled

WX(x) = 0k(x)Xk(x) (3.1)

wherex ∈ U , X = XkEk, and0k are some matrix functions onU . Evidently, a linear
connection onM is a linear onU for everyU (see (2.3)).

Proposition 3.1.If for someS-derivationD there exists a normal basis{E′i} in U ⊆ M, i.e.
W ′X|U = 0 for every vector fieldX, thenD is linear on the setU .

Proof. Let us fix a basis{Ei} and putE′i = Aji Ej . ThenW ′X|U = 0, i.e.W ′X(x) = 0 for
x ∈ U , which, in conformity with (2.2), is equivalent to (3.1) with0k = −(Ek(A))A−1,
A = [Aij ]. �

The opposite statement to proposition 3.1 is generally not true and for its appropriate
formulation we need some preliminary results and explanations.

Let p be an integer,p > 1, and the Greek indicesα andβ run from 1 top. Let Jp be
a neighbourhood inRp and{sα} = {s1, . . . , sp} be (Cartesian) coordinates inRp.

Lemma 3.1.Let Zα : Jp → GL(m,R), GL(m,R) being the group ofm × m matrices on
R, beC1 matrix-valued functions onJp. Then the initial-value problem

∂Y

∂sα

∣∣∣∣
s

= Zα(s)Y Y |s=s0 = 1I α = 1, . . . , p (3.2)

where 1I := [δij ]
m
i,j=1 is the unit matrix of the corresponding size,s ∈ Jp, s0 ∈ Jp is fixed,

andY is am×mmatrix function onJp, has a solution, denoted byY = Y (s, s0;Z1, . . . , Zp),
which is unique and smoothly depends on all its arguments iff

Rαβ(Z1, . . . , Zp) := ∂Zα

∂sβ
− ∂Zβ
∂sα
+ ZαZβ − ZβZα = 0. (3.3)

Proof. According to the results from [13, ch VI], in whichZ1, . . . , Zp are of classC1, the
integrability conditions for (3.2) are (cf [13, ch VI, equation (1.4)])

0= ∂2Y

∂sα∂sβ
− ∂2Y

∂sβ∂sα
= ∂(ZβY )

∂sα
− ∂(ZαY )

∂sβ

= ∂Zβ

∂sα
Y − ∂Zα

∂sβ
Y + ZβZαY − ZαZβY = −Rαβ(Z1, . . . , Zp)Y.

Hence (see, e.g. [13, ch VI, theorem 6.1]) the initial-value problem (3.2) has a unique
solution (of classC2) iff (3.3) is satisfied. �

Let p 6 n := dim(M), α, β = 1, . . . , p andµ, ν = p + 1, . . . , n. Let γ : Jp → M be
a C1 map. We suppose that for anys ∈ Jp there exists its (p-dimensional) neighbourhood
Js ⊆ Jp such that the restricted mapγ |Js : Js → M is without self-intersections, i.e. in
Js does not exist pointss1 and s2 6= s1 with the propertyγ (s1) = γ (s2). This assumption
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is equivalent to the one that the points of self-intersections ofγ , if any, can be separated
by neighbourhoods. WithJps we denote the union of all the neighbourhoodsJs with the
above property; evidently,Jps is the maximal neighbourhood ofs in which γ is without
self-intersections.

Let us suppose at first thatJps = Jp, i.e. thatγ is without self-intersection, and that
γ (J p) is contained in a single-coordinate neighbourhoodV of M.

Let us fix some one-to-oneC1 mapη : Jp × J n−p → M such thatη(·, t0) = γ for a
fixed t0 ∈ J n−p, i.e. η(s, t0) = γ (s), s ∈ Jp. In V

⋂
η(J p, J n−p) we define coordinates

{xi} by putting(x1(η(s, t)), . . . , xn(η(s, t))) := (s, t) ∈ Rn, s ∈ Jp, t ∈ J n−p.

Proposition 3.2.Let γ : Jp → M be aC1 map without self-intersections and such that
γ (J p) lies only in a one-coordinate neighbourhood. Let the derivationD be linear on
γ (J p). Then a necessary and sufficient condition for the existence of a basis{E′i}, defined
in a neighbourhood ofγ (J p), in which the components ofD along every vector field vanish
on γ (J p) is the validity in the above-defined coordinates{xi} of the equalities

[Rαβ(−01 ◦ γ, . . . ,−0p ◦ γ )]|Jp = 0 α, β = 1, . . . , p (3.4)

whereRαβ(. . .) are defined by (3.3) form = n and(s1, . . . , sp) = s ∈ Jp, i.e.

[Rαβ(−01 ◦ γ, . . . ,−0p ◦ γ )](s) = ∂0α(γ (s))

∂sβ
− ∂0β(γ (s))

∂sα
+ (0α0β − 0β0α)|γ (s). (3.5)

Remark.This result was obtained by means of another method in [10] for the special case
whenD is a symmetric affine connection andU is a submanifold ofM.

Proof. The following considerations will be made in the above-defined neighbourhood
V
⋂
η(J p, J n−p) and coordinates{xi}. Let Ei = ∂/∂xi .

Necessity.Let there exist a normal frame{E′i = Aji Ei} on γ (J p), i.e.W ′X(γ (s)) = 0,
s ∈ J p. By (2.2) the existence of{E′i} is equivalent to that ofA = [Aji ], transforming
{Ei} into {E′i}, and such that [A−1(WXA+X(A))]|γ (s) = 0 for everyX. AsD is linear on
γ (J p) (cf proposition 3.1), equation (3.1) is valid forx ∈ γ (J p) and some matrix-valued
functions0k. ConsequentlyA must be a solution of0′k(x) = 0, i.e. of

0k(γ (s))A(γ (s))+ ∂A

∂xk

∣∣∣∣
γ (s)

= 0 s ∈ Jp. (3.6)

Now define nondegenerate matrix-valued functionsB andBi by

A(γ (s)) = B(s) ∂A

∂xα

∣∣∣∣
γ (s)

= ∂B(s)

∂sα
α = 1, . . . , p

∂A

∂xν

∣∣∣∣
γ (s)

= Bν(s) ν = p + 1, . . . , n.

Substituting these equalities into (3.6), we see that it splits into

0α(γ (s))B(s)+ ∂B(s)
∂sα

= 0 α = 1, . . . , p (3.7)

0ν(γ (s))B(s)+ Bν(s) = 0 ν = p + 1, . . . , n. (3.8)

As these equations do not involveBα, the Bα ’s are left arbitrary by (3.6), while the
remainingBi ’s are expressed viaB(s) through (see (3.8))

Bν(s) = −0ν(γ (s))B(s) ν = p + 1, . . . , n. (3.9)
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So,B(s) is the only quantity for determination. It must satisfy (3.7). If we arbitrarily
fix the valueB(s0) = B0 for a fixeds0 ∈ Jp and putY (s) = B(s)B−1

0 (B is nondegenerate
asA is such by definition), we see thatY is a solution of the initial-value problem

∂Y

∂sα

∣∣∣∣
s

= −0α(γ (s))Y (s) α = 1, . . . p Y |s=s0 = 1Ip = [δij ]
p

i,j=1. (3.10)

By lemma 3.1 this initial-value problem has a unique solutionY = Y (s, s0;−01 ◦
γ, . . . ,−0p ◦ γ ) iff the integrability conditions (3.4) are valid.

Consequently the existence of{E′i} (or of A) leads to (3.4).
Sufficiency.If (3.4) takes place, the general solution of (3.7) is

B(s) = Y (s, s0;−01 ◦ γ, . . . ,−0p ◦ γ )B0 (3.11)

in which s0 ∈ Jp and the nondegenerate matrixB0 are fixed. Consequently, admittingA to
be aC1 matrix-valued function, we see that inV

⋂
η(J p, J n−p) we can expandA(η(s, t)),

s ∈ Jp, t ∈ J n−p up to second order terms with respect to(t− t0) as

A(η(s, t)) = B(s)+ Bi(s)[xi(η(s, t))− xi(η(s, t0))]

+Bij (s, t; η)[xi(η(s, t))− xi(η(s, t0))][x
j (η(s, t))− xj (η(s, t0))] (3.12)

for the above-defined matrix-valued functionsB, Bi , and someBij , which are such that
detB(s) 6= 0,∞ andBij and their first derivatives are bounded whent → t0. (Note that
in (3.12) the terms corresponding toi, j = 1, . . . , p are equal to zero due to the definition
of {xi}.) In this case, due to (3.7)–(3.11), the general solution of (3.6) is

A(η(s, t)) =
{

1I−
n∑

λ=p+1

0λ(γ (s))[x
λ(η(s, t))− xλ(γ (s))]

}
×Y (s, s0;−01 ◦ γ, . . . ,−0p ◦ γ )B0

+
n∑

µ,ν=p+1

{Bµν(s, t; η)[xµ(η(s, t))− xµ(γ (s))][xν(η(s, t))− xν(γ (s))]}

(3.13)

wheres0 ∈ Jp and the nondegenerate matrixB0 are fixed andBµ,ν , µ, ν = p + 1, . . . , n,
together with their first derivatives are bounded whent → t0. (The fact that only sums
from p + 1 to n enter (3.13) is a consequence ofxα(η(s, t)) = xα(γ (s)) = sα, i.e.
xα(η(s, t))− xα(η(s, t0)) = xα(η(s, t))− xα(γ (s)) = sα − sα ≡ 0, α = 1, . . . , p.)

Hence, from (3.4) follows the existence of a class of matricesA(x), x ∈
V
⋂
η(J p, J n−p) such that the frames{E′i = Aji Ej } are normal forD (which is supposed

to be linear onγ (J p)). �

Thus bases{E′i} in which W ′X = 0 exist iff (3.4) is satisfied. If (3.4) is valid, then
the normal bases{E′i} are obtained from{Ei = ∂/∂xi} by means of linear transformations
whose matrices must have the form (3.13).

Now we are ready to consider a general smooth(C1) mapγ : Jp → M whose points
of self-intersection, if any, can be separated by neighbourhoods. For anyr ∈ Jp choose a
coordinate neighbourhoodVγ (r) of γ (r) in M. Let there be given a fixedC1 one-to-one map
ηr : Jpr × J n−p → M such thatηr(·, tr0) = γ |Jpr for sometr0 ∈ J n−p. In the neighbourhood
Vγ (r)

⋂
ηr(J

p
r , J

n−p) of γ (J pr )
⋂
Vγ (r) we introduce local coordinates{xir} defined by

(x1
r (ηr(s, t)), . . . , x

n
r (ηr(s, t))) := (s, t) ∈ Rn

wheres ∈ Jpr andt ∈ J n−p are such thatηr(s, t) ∈ Vγ (r).
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Theorem 3.1.Let the points of self-intersection of theC1 map γ : Jp → M, if any, be
separable by neighbourhoods. Let theS-derivationD be linear onγ (J p), i.e. (3.1) to be
valid for x ∈ γ (J p). Then a necessary and sufficient condition for the existence in some
neighbourhood ofγ (J p) of a basis{E′i} in which the components ofD (along every vector
field) vanish onγ (J p) is for everyr ∈ J in the above-defined local coordinates{xir} to be
fulfilled [

Rαβ(−01 ◦ γ, . . . ,−0p ◦ γ )
]
(s) = 0 α, β = 1, . . . , p (3.14)

where0α are calculated by means of (3.1) in{xir}, Rαβ are given by (3.5), ands ∈ Jpr is
such thatγ (s) ∈ Vγ (r).

Proof. For anyr ∈ Jp the restricted mapγ |′Jpr : ′Jpr → M, where′Jpr := {s ∈ Jpr , γ (s) ∈
Vγ (s)}, is without self-intersections (see the above definition ofJ

p
r ) andγ |′Jpr ( ′Jpr ) = γ ( ′Jpr )

lies in the coordinate neighbourhoodVγ (r).
So, if a normal frame{E′i} exists forD, then, by proposition 3.2, equations (3.14) are

identically satisfied.
Conversely, if (3.14) are valid, then, again, by proposition 3.2 for everyr ∈ Jp in a

certain neighbourhood′Vr of γ ( ′Jpr ) in Vγ (r) exists a normal onγ (′Jpr ) basis{Eri } for DX

along every vector fieldX. From the neighbourhoods′Vr we can construct a neighbourhood
V of γ (J p), for example by puttingV =⋃r∈Jp

′Vr . Generally,V is sufficient to be taken
as a union of′Vr for some, but not allr ∈ Jp. On V we can obtain a normal basis{E′i}
by puttingE′i |x = Eri |x if x belongs to only one neighbourhood′Vr . If x belongs to more
than one neighbourhood′Vr we can choose{E′i |x} to be the basis{Eri |x} for some arbitrary
fixed r. �

Remark.Note that generally the basis obtained at the end of the proof of theorem 3.1 is not
continuous in the regions containing intersections of several neighbourhoods′Vr . Hence it
is, generally, no longer differentiable there. Therefore the adjective ‘normal’ is not very
suitable in the mentioned regions. Maybe in such cases it is better to speak about ‘special’
frames instead of ‘normal’ ones.

Proposition 3.3.If on the setU ⊆ M there exists normal frames onU for someS-derivation
along every vector field, then all of them are connected by linear transformations whose
coefficients are such that the action on them of the corresponding basic vectors vanishes on
U.

Proof. If {Ei} and {E′i = Aji Ej } are normal onU bases, i.e. ifWX(x) = W ′X(x) = 0 for
x ∈ U and every vector fieldX = XiEi , then due to (2.2), we haveX(A)|U = 0, i.e.
Ei(A)|U = 0. In contrast, ifWX|U = 0 in {Ei} andE′i = Aji Ej with Ei(A)|U = 0, then
from (2.2) followsW ′X(x)|U = 0, i.e. {E′i} is also a normal basis. �

Proposition 3.4.If for someS-derivationD there exists a local holonomic normal basis on
the setU ⊆ M for D along every vector field, thenD is torsion free onU . On the other
hand, ifD is torsion free onU and there exist smooth (C1) normal bases onU for D along
every vector field, then all of them are holonomic onU , i.e. their basic vectors commute
on U .
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Proof. If {E′i} is a normal basis onU , i.e. W ′X(x) = 0 for everyX and x ∈ U , then
using (2.1) and (2.4) (see also [6, equation (15)]), we findT D(E′i , E

′
j )|U = −[E′i , E

′
j ]|U .

Consequently{E′i} is holonomic onU , i.e. [E′i , E
′
j ]|U = 0, iff 0 = T D(X, Y )|U =

{X′iY ′j T D(E′i , E′j )}|U for every vector fieldsX andY , which is equivalent toT D|U = 0.

Conversely, letT D|U = 0. We want to prove that any basis{E′i = A
j

i Ej } in
which W ′X = 0 is holonomic on U. The holonomicity onU means 0= [E′i , E

′
j ]|U =

{−(A−1)lk[E
′
j (A

k
i )−E′i (Akj )]E′l}|U . However, (see proposition 3.1 and (3.1)) the existence of

{E′i} is equivalent toWX|U = (0kXk)|U for some functions0k and everyX. These two facts,
combined with (2.1) and (2.4), lead to(0k)ij = (0j )ik. Using this and{0kA+∂A/∂xk}|U = 0
(see the proof of proposition 3.1), we findE′j (A

k
i )|U = −{AljAmi (0l)km}|U = (E′i (A

k
j ))|U .

Therefore [E′i , E
′
j ]|U = 0 (see above), i.e.{E′i} is holonomic onU . �

4. Derivations along a fixed vector field

In this section we briefly outline some results concerning normal frames for (S-)derivations
along afixed vector field.

A derivationDX is linear onU ⊆ M along afixed vector fieldX if (3.1) holds for
x ∈ U and the givenX. In this sense, evidently,any derivation along a fixed vector field is
linear on every setand, consequently, on the whole manifoldM. Namely this is the cause
due to which the analogue of proposition 3.1 for such derivations, which is evidently true,
is absolutely trivial and does not even need to be formulated.

The existence of normal frames in which the components ofDX, with a fixed X,
vanish on some setU ⊆ M significantly differs from the same problem forDX with an
every X (see section 3). In fact, if{E′i = A

j

i Ej }, {Ei} being a fixed basis onU , is a
normal frame onU , i.e. W ′X|U = 0, then, due to (2.2), its existence is equivalent to the
one of A := [Aji ] for which (WXA + X(A))|U = 0 for the given X. As X is fixed,
the values ofA at two different points, sayx, y ∈ U , are connected through the last
equation if and only ifx and y lie on one and the same integral curve ofX, the part
of which betweenx and y belongs entirely toU . Hence, if γ : J → M, J is an R-
interval, is (a part of) an integral curve ofX, i.e. atγ (s), s ∈ J the tangent toγ vector
field γ̇ is γ̇ (s) := X|γ (s), then alongγ the equation(WXA + X(A))|U = 0 reduces to
dA/ds|γ (s) = γ̇ (A)|s = (X(A))|γ (s) = −WX(γ (s))A(γ (s)). Using lemma 3.1 forp = 1,
we see that the general solution of this equation is

A(s; γ ) = Y (s, s0;−WX ◦ γ )B(γ ) (4.1)

wheres0 ∈ J is fixed, Y = Y (s, s0;Z), Z being aC1 matrix function ofs, is the unique
solution of the initial-value problem (see [13, ch IV, section 1])

dY

ds
= ZY Y |s=s0 = 1I (4.2)

and the nondegenerate matrixB(γ ) may depend only onγ , but not ons. (Note that (4.2) is
a special case of (3.2) forp = 1 and by lemma 3.1 it always has a unique solution because
R11(Z1) ≡ 0 due to (3.3) forp = 1.)

From the above considerations, the next propositions follow.

Proposition 4.1.There exist normal bases for anyS-derivation along a fixed vector field on
every setU ⊆ M.
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Proposition 4.2.The normal on the setU ⊆ M bases for someS-derivation along a fixed
vector fieldX are connected by linear transformations whose matrices are such that the
action ofX on them vanishes onU .

Proof. If {Ei} and {E′i = Aji Ej } are such thatW ′X|U = WX|U = 0, then, due to (2.2), we
haveX(A)|U = 0. On the other hand, ifWX|U = 0 andX(A)|U = 0, then, by (2.2), is
fulfilled W ′X|U = 0, i.e. {E′i} is normal. �

5. Linear connections

The results of section 3 can directly be applied to the case of linear connections. As this is
more or less trivial, we present below only three such consequences.

Corollary 5.1. Let the points of self-intersection of theC1 map γ : Jp → M, if any, be
separable by neighbourhoods,∇ be a linear connection onM with local components0ijk
(in a basis{Ei}) and0k := [0ijk]

n
i,j=1. Then in a neighbourhood ofγ (J p) there exists a

normal frame{E′i} on γ (J p) for ∇, i.e.0′k|γ (J p) = 0, iff for every r ∈ Jp in the coordinates
{xir} (defined before theorem 3.1) is satisfied (3.14) in which0α, α = 1, . . . , p are part of
the components of∇ in {xir} ands ∈ Jp is such thatγ (s) ∈ Vγ (r).

Proof. For linear connections (3.1) is valid for everyX in any basis. So, if in a basis{E′i}
is fulfilled W ′X|U = 0 for U ⊆ M, we have in it0′k|U = 0 (see (2.2)) and vice versa, if
in a basis{E′i} is valid 0′k|U = 0, thenWX|U = 0 for everyX. Combining this fact with
theorem 3.1, we get the required result. �

Corollary 5.2. If on the setU ⊆ M there exist normal frames for some linear connection
on U , then these frames are connected by linear transformations whose matrices are such
that the action of the corresponding basic vectors on them vanishes onU .

Proof. The result follows from proposition 3.3 and the proof of corollary 5.1. �

Corollary 5.3. Let, for some linear connection on a neighbourhood of some setU ⊆ M,
there exist locally smooth normal bases onU . Then one (and hence any) such basis is
holonomic onU iff the connection is torsion free onU .

Proof. The statement follows from (3.1) (or (2.3)) and proposition 3.4. �
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6. Conclusion. The equivalence principle

Mathematically theorem 3.1 is the main result of this work. From the view point of its
physical application, it expresses a sufficiently general necessary and sufficient condition for
the existence of the normal frames considered here for tensor derivations, that, in particular,
can be linear connections. For instance, it covers the problem on arbitrary submanifolds.
In this sense, its special cases are the results from [10] and our previous papers [7, 9].

Let γ : Jp → M, with Jp being a neighbourhood inRp for some integerp 6 dimM, be
aC1 map. Ifp = 0 orp = 1, then the conditions (3.14) are identically satisfied, i.e.Rαβ = 0
(see (3.5)). Hence, in these two cases normal bases alongγ always exist (respectively at a
point or along a path), which was already established in [7, 6] (and independently in [14])
and in [9] respectively.

In the other limiting case,p = n := dim(M), it is easily seen that the quantities (3.5)
are simply the matrices formed from the components of the corresponding curvature tensor
[7, 3, 4] and that the setγ (J p) consists of one or more neighbourhoods inM. Consequently,
now theorem 3.1 states that the normal frames investigated here exist iff the corresponding
derivation is flat, i.e. if its curvature tensor is zero, a result already found in [7].

In the general case, when 26 p < n (for n > 3), normal bases, even anholonomic,
do not exist if (and only if) conditions (3.14) are not satisfied. Besides, in this case the
quantities (3.5) cannot be considered as a ‘curvature’ ofγ (J p). They are something like
‘commutators’ of covariant derivatives of a type∇F , whereF is a tangent toγ (J p) vector
field (i.e.F |x ∈ T |x(γ (J p)) if γ (J p) is a submanifold ofM), and which act on a tangent
to M vector fields.

Let us also note that the normal frames on a setU are generally anholonomic. They
may be holonomic only in the torsion free case when the derivation’s torsion vanishes onU .

The results of this work, as well as those of [7, 9], are important in connection with
the use of normal frames in gravitational theories [1, 15]. In particular, we know that there
exist normal frames (at a point or along paths) in Riemann–Cartan spacetimes, a problem
that was open until recently [15].

The above results outline the general bounds of validity and express the exact
mathematical form of the equivalence principle. This principle requires [1] that the
gravitational field strength, theoretically identified with the components of a linear
connection, can locally be transformed to zero by a suitable choice of the local reference
frame (basis), i.e. by it there have to exist local bases in which the corresponding
connection’s components vanish.

The above discussion, as well as the results from [7, 9], show the identical validity of
the equivalence principle in zero- and one-dimensional cases, i.e. forp = 0 andp = 1.
Besides, these are theonly caseswhen it is fulfilled for arbitrary gravitational fields. In
fact, forp > 2 (in the casen > 2), as we saw in section 5, normal bases do not exist unless
the conditions (3.14) are satisfied. In particular, forp = n > 2 it is valid only for flat linear
connections (cf [7]).

Mathematically, the equivalence principle is expressed through corollary 5.1 or, in some
more general situations, through theorem 3.1. Thus, we see that in gravitational theories
based on linear connections this principle is identically satisfied at any fixed point or along
any fixed path, but on submanifolds of dimensions greater than or equal to two it is generally
not valid. Therefore in this class of gravitational theories the equivalence principle is a
theorem derived from their mathematical background. It may play a role as a principle if
one tries to construct a gravitational theory based on more general derivations, but then,
generally, it will reduce such a theory to one based on linear connections.
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A comprehensive analysis of the equivalence principle on the base of the present work
and [7, 9] can be found in [16].
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